

BioMaster RT-PCR – Color (2×)

Cat. Number: RMC02-40, RMC02-200

Product description:

BioMaster RT-PCR – Color (2×) includes **2× buffer for RT-PCR-Color** containing all the necessary components (except for DNA template and primers), **BioMaster-mix** and **DEPC-treated water**. The kit is designed for one-step reverse transcription and polymerase chain reaction (RT-PCR).

BioMaster-mix contains the optimal ratio of M-MuLV –RH to *HS-Taq* DNA polymerase for both reactions.

M-MuLV –RH is a genetically modified Moloney Murine Leukemia Virus reverse transcriptase (M-MuLV). The enzyme exerts RNA- and DNA-dependent polymerase activity but lacks RNase H activity. M-MuLV –RH reverse transcriptase exhibits improved thermal stability and is active at high temperatures (up to 50°C).

HS-Taq DNA polymerase is a recombinant *Taq* DNA polymerase inactivated by specific monoclonal antibodies. The enzyme is inactive at temperatures up to 70 °C, it is activated at the first PCR cycle during a short 5-min incubation at 95 °C. Recombinant *HS-Taq* DNA polymerase catalyzes 5' \rightarrow 3' synthesis of DNA and possesses 5' \rightarrow 3' exonuclease activity of the native *Taq* DNA polymerase from *Thermus aquaticus*. Recombinant *HS-Taq* DNA polymerase is ideal for conventional PCR of the templates of up to 5 kbp.

The buffer is optimized for both efficient RT and PCR. High density of the solution and marker dyes facilitate gel loading.

Cat. #	2× buffer for RT- PCR- Color	BioMaster- mix	DMSO	DEPC-treated water	Number of reactions (50 µl each)
RMC02-40	2 × 0.5 ml	1 × 80 µl	0,5 ml	2 × 0.5 ml	40
RMC02-200	4 × 1.25 ml	1 × 400 µl	0,5 ml	3 × 1.8 ml	200

Product composition:

2× buffer for RT-PCR-Color contains:

100 mM Tris-HCl (pH 8.3 at 25 °C), 150 mM KCl, 0.6 mM each deoxynucleoside triphosphate, 6 mM MgCl₂, 8 mM DTT, enzyme stabilizers and enhancers, marker dyes.

BioMaster-mix contains:

50 mM Tris-HCl (pH 8.0 at 25 °C), 100 mM NaCl, 1 mM EDTA, 5 mM DTT, 50 % (v/v) glycerol and 0.1 % (v/v) NP-40, M-MuLV –RH reverse transcriptase and *HS-Taq* DNA polymerase.

Applications:

- Gene expression analysis;
- One-step conventional RT-PCR.

Reaction mix features

- The reaction mix is optimized for the specific and effective performance of M-MuLV -RH reverse transcriptase and HS-Taq DNA polymerase;
- Allows long-term storage (storage of BioMaster RT-PCR Color (2×) at room temperature for 2 days and/or multiple thawing-freezing cycles do not affect RT-PCR efficacy);
- The mix contains dyes that do not interfere with polymerase performance and components increasing sample density for easy gel loading.

Note: Mobility of dyes in 0.5 - 1.5% agarose gel:

xylene cyanol	bromphenol blue	Orange G	tartrazine
10000 – 4000 bp	500-400 bp	<100 bp	<20 bp

Benefits of use

- High specificity;
- High sensitivity;
- Convenient and easy-to-use;
- Low pipetting error and low risk of cross-contamination;
- Standardized conditions of the same-type reactions (reduced pipetting error during mixing PCR components in a series of experiments);
- PCR products can be further subjected to TA cloning due to deoxyadenosine overhangs at the ends of amplified DNA fragments;
- Shorter step of sample preparation for the analysis of PCR results. No loading buffer is required due to the high density of the mixture.

Limits of use

• Not recommended for amplicons of > 5 kbp.

Protocol

Before starting to work, we recommend to get acquainted with the protocol and recommendations presented at our site: http://biolabmix.ru/catalog

- 1. Thaw 2× buffer for RT-PCR-Color and vortex thoroughly.
- 2. Place the thin-wall tubes in ice and add the following components considering the final volume of a reaction mixture equal to 50μ l:

Component	Volume	Final concentration
2× mix for RT-PCR-Color	25 µl	٦×
BioMaster-mix	2 µl	
Forward primer	variable	0.1 – 500 nM
Reverse primer	variable	0.1 – 500 nM
RNA template	variable	1 pg – 1 µg
Sterile water	up to 50 µl	

Note: in case of amplification of templates with complicated spatial structure, DMSO can be added in the amount of 1 to 5% of the final volume of the reaction solution. Change in Tm of the primers should be taken into account when selecting the amplification program.

Note: the volume of **BioMaster-mix** can be varied in the range of 1 to 3 μ l per 50 μ l reaction depending on the gene copy number and complexity.

- 3. Carefully vortex and remove droplets by centrifugation.
- Note: in case of using the thermal cycler without a heating lid, add a drop of mineral oil (25-35 $\mu l)$ to each tube.
- 4. Perform PCR using recommended conditions:

Step	Temperature, °C	Incubation time	Number of cycles
Reverse transcription	45	30 min	1
Preliminary denaturation	95	5 min	1
Denaturation	95	5 – 15 sec	
Annealing	50 – 68 (Tm-5)	5 – 20 sec	25-45
Elongation	72	0.5-1 min/kbp	
Final elongation	72	5 – 15 min	1

Tm: template-primer duplex melting temperature, it depends on the primer structure. The following formula can be used for Tm estimation: Tm ($^{\circ}$ C) = 2 x (A+T) + 4 x (G+C).

5. After conducting PCR, analyze amplification products by gel electrophoresis. No loading buffer is required.

Note: we recommend using 1xTAE buffer with ethidium bromide for separation of amplification products by gel electrophoresis.

Optimization of reaction conditions

- 1. The reaction volume can be varied in the range of 10 to 50 μ l with proportional change in the amount of all components.
- 2. When using a template containing GC-rich regions and regions with complicated spatial structure, the temperature can be increased to 50 °C, and/or reagents facilitating melting of the secondary structure of the nucleic acids (e.g. DMSO) can be added.

Storage conditions: in a place protected from light at +4 $^{\circ}$ C – 1 month; at -20 $^{\circ}$ C – 1 year; no more than 30 thawing-freezing cycles.

Transportation: Transport in thermocontainers with cooling elements; the ambient temperature increment to the room temperature during the transportation up to 7 days is allowed.